SM339 - Applied Statistics

Lesson 13. Coefficient of Determination for Simple Linear Regression - Part 1

Note. In Part 2 of this lesson, you can run the R code that generates the outputs here in Part 1.

1 Overview

• Correlation quantifies the strength of the linear relationship between *X* and *Y*

Population correlation	Sample correlation		

• Some examples that illustrate different correlation values:

https://commons.wikimedia.org/wiki/File:Correlation_examples.png

2 Properties

⇒ In simple linear regression, testing whether $\beta_1 = 0$ (versus $\beta_1 \neq 0$) is equivalent to testing whether $\rho = 0$ (versus $\rho \neq 0$)

3 *t*-test for correlation

- Question: Are the variables X and Y correlated?
- Formal steps:
 - 1. State the hypotheses:
 - 2. Calculate the test statistic:
 - 3. Calculate the *p*-value:
 - If the conditions for simple linear regression hold, then the test statistic *t* follows $f_{t(n-2)}(x)$
 - 4. State your conclusion, based on the given significance level α :

If we reject H_0 (*p*-value $\leq \alpha$):

We reject H_0 because the *p*-value is less than the significance level $\underline{\alpha}$. We see significant evidence that X and Y are correlated.

If we fail to reject H_0 (*p*-value > α):

We fail to reject H_0 because the *p*-value is greater than the significance level $\underline{\alpha}$. We do not see significant evidence that X and Y are correlated.

The underlined parts above should be rephrased to correspond to the context of the problem

Example 1. Consider once again our regression model with the AccordPrice data. Recall that there are 30 cars in the data.

```
library(Stat2Data)
data(AccordPrice)
```

We can find the sample correlation between *Price* and *Mileage* in R using the cor() function:

cor(AccordPrice\$Price, AccordPrice\$Mileage)

We find that the sample correlation between *Price* and *Mileage* is -0.8489.

In fact, we can find the sample correlation between all the variables in a data frame using the cor() function, as long as all the variables are quantitative:

cor(AccordPrice)

Here is the output:

A matrix: 3 × 3 of type dbl					
	Age	Price	Mileage		
Age	1.0000000	-0.8956156	0.7895010		
Price	-0.8956156	1.0000000	-0.8489441		
Mileage	0.7895010	-0.8489441	1.0000000		

Perform a *t*-test to determine whether there is a significant ($\alpha = 0.05$) correlation between *Price* and *Mileage*.

• Note that we can perform the *t*-test for correlation without performing simple linear regression

• Sometimes it isn't clear which variable is explanatory vs. response, so it is handy to be able to test correlation without doing regression

Example 2. Continuing with the AccordPrice example...

We can also perform the *t*-test for correlation in R using the following code:

The output is as follows:

Pearson's product-moment correlation

```
data: AccordPrice$Price and AccordPrice$Mileage
t = -8.5002, df = 28, p-value = 3.055e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    -0.9259982 -0.7039888
sample estimates:
        cor
-0.8489441
```

4 Correlation does not imply causation

• For example, suppose

X = number of firefighters

Y = damage in dollars

- *X* and *Y* probably have a strong correlation
- Do more firefighters present cause more damage?
- Size of fire is responsible for both
- A significant correlation only means the variables are associated, not that one causes the other

https://xkcd.com/552/

5 Coefficient of determination (r^2)

• The **coefficient of determination** r^2 tells us how much of the variability in the response variable is explained by the regression model

• For simple linear regression, the coefficient of determination is directly related to the sample correlation:

coefficient of determination = $(\text{sample correlation})^2$

Example 3. Continuing with the AccordPrice example...

Look at the R output in Lessons 11 and 12.

- a. Using the ANOVA table output by R, calculate the coefficient of determination (r^2). Interpret it.
- b. Look at the summary output by R, where do you see the value you calculated in part a?

6 Summary

- We have three distinct ways to test for a significant linear relationship between two quantitative variables:
 - 1. *t*-test for simple linear regression slope
 - 2. ANOVA F-test for simple linear regression
 - 3. *t*-test for correlation
- These three procedures are exactly equivalent for simple linear regression
- When we have more than one predictor, these tests will have different purposes
- A significant linear relationship does not mean that a line is the best way to describe the relationship
- Correlation does not imply causation!